Chapter 10

Lie Algebras/Angular momentum

This chapter sits between an introduction to Lie Algebra and a recap of angular momentum and the addition of angular momentum. For those of you who are already comfortable with all things angular momentum this chapter is intended to expose you to the deep mathematics underlying these topics to provide you with a fresh perspective and equip you for future forays into the world of Lie Algebras. That said, for those of you who are fed up of group theory by this point and/or are perhaps a little rusty when it comes to the addition of angular momentum you should be able to largely ignore the group theory and reason your way through these topics based on physical intuition.

There are two main topics we will cover. Firstly, we will introduce the Lie algebras by looking at the example of rotations. In doing so, we will rediscover a lot of what you already know about angular momentum (but frame it slightly different language). Secondly, we will discuss the addition of angular momentum and the relationship between this and the irreducible representations of tensor product representations of rotation groups. In both parts I will closely follow Group Theory in a Nutshell for Physicists (GTNFP). I'm going to copy the most relevant sections here for your convenience (making only minor tweaks) but you might prefer to go and read directly from there.

10.1 Intro to Lie Algebras via Rotations. An trimmed copy of I.3 in GTNFP

10.1.1 A little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious but brilliant idea that to rotate through, say, 29°, you could just as well rotate through a zillionth of a degree and repeat the process 29 zillion times. To study rotations, it suffices to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A rotation through a finite angle can always be obtained by performing infinitesimal rotations repeatedly. As is typical with many profound statements in physics and mathematics, Lie's idea is astonishingly simple. Replace the proverb "Never put off until tomorrow what you have to do today" by "Do what you have to do a little bit at a time."

A rotation through an infinitesimal angle θ is almost the identity I, that is, no rotation at all, and so can be written as

$$R(\theta) \simeq I + A \tag{10.1}$$

Here A denotes some infinitesimal matrix of order θ . The neglected terms in (10.1) are of order θ^2 and smaller.

Let us imagine Lie saying to himself, "Pretend that I slept through trigonometry class and I don't know anything about how rotation matrices look. Instead, I will define rotations as the set of linear transformations on 2-component objects u' = Ru and v' = Rv that leave $u^T \cdot v$ invariant. I will impose

$$R^T R = I (10.2)$$

and derive (10.1). But according to my brilliant idea, it suffices to solve this condition for rotations infinitesimally close to the identity."

Following Lie, we plug $R \simeq I + A$ into (10.2). Since by assumption A^2 , being of order θ^2 , can be neglected relative to A, we have

$$R^{T}R \simeq (I + A^{T})(I + A) \simeq (I + A^{T} + A) = I$$
 (10.3)

Thus, this requires $A^T = -A$, namely, that A must be antisymmetric.

But there is basically only one 2×2 antisymmetric matrix:

$$\mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \tag{10.4}$$

In other words, the solution of $A^T = -A$ is $A = \theta \mathcal{J}$ for some real number θ . Thus, rotations close to the identity have the form

$$R = I + \theta \mathcal{J} + O(\theta^2) = \begin{pmatrix} 1 & \theta \\ -\theta & 1 \end{pmatrix} + O(\theta^2)$$
 (10.5)

The antisymmetric matrix \mathcal{J} is known as the generator of the rotation group. We obtain, without knowing any trigonometry, that under an infinitesimal rotation, $x \to x' \simeq x + \theta y$, and $y \to y' \simeq -\theta x + y$, which is of course consistent with (10.5). We could also obtain this result by drawing an elementary geometrical figure involving infinitesimal angles.

Now recall the identity $e^x = \lim_{N\to\infty} (1 + \frac{x}{N})^N$ (which you can easily prove by differentiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

$$R(\theta) = \lim_{N \to \infty} \left(R\left(\frac{\theta}{N}\right) \right)^N = \lim_{N \to \infty} \left(1 + \frac{\theta \mathcal{J}}{N} \right)^N = e^{\theta \mathcal{J}}$$
 (10.6)

The first equality represents Lie's profound idea: we cut up the given noninfinitesimal angle θ into N pieces so that θ/N is infinitesimal for N large enough and perform the infinitesimal rotation N times. The second equality is just (10.5). For the last equality, we use the identity just mentioned, which amounts to the definition of the exponential.

As an alternative but of course equivalent path to our result, simply assert that we have every right, to leading order, to write $R\left(\frac{\theta}{N}\right) = 1 + \frac{\theta \mathcal{J}}{N} \simeq e^{\frac{\theta \mathcal{J}}{N}}$. Thus

$$R(\theta) = \lim_{N \to \infty} \left(R\left(\frac{\theta}{N}\right) \right)^N = \lim_{N \to \infty} \left(e^{\frac{\theta \mathcal{J}}{N}} \right)^N = e^{\theta \mathcal{J}}$$
 (10.7)

In calculus, we learned about the Taylor or power series. Taylor said that if we gave him all the derivatives of a function f(x) at x = 0 (say), he could construct the function. In contrast, Lie

said that, thanks to the multiplicative group structure, he only needs the first derivative of the group element $R(\theta)$ near the identity. Indeed, we recognize that \mathcal{J} is just $\frac{dR(\theta)}{d\theta}\big|_{\theta=0}$. The reason that Lie needs so much less is of course that the group structure is highly restrictive.

Finally, we can check that the formula $R(\theta) = e^{\theta \mathcal{J}}$ reproduces (10.5) for any value of θ . We simply note that $\mathcal{J}^2 = -I$ and separate the exponential series, using Taylor's idea, into even and odd powers of \mathcal{J} :

$$e^{\theta \mathcal{J}} = \sum_{n=0}^{\infty} \frac{\theta^n \mathcal{J}^n}{n!} = \left(\sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k}}{(2k)!}\right) I + \left(\sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k+1}}{(2k+1)!}\right) \mathcal{J}$$
 (10.8)

which simplifies to

$$e^{\theta \mathcal{J}} = \cos \theta \, I + \sin \theta \, \mathcal{J} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \tag{10.9}$$

which is the familiar rotation matrix in 2D that you probably derived for yourself back in high school using trigonometry. Note that this works, because \mathcal{J} plays the same role as i in Euler's identity $e^{i\theta} = \cos \theta + i \sin \theta$.

10.1.2 Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher-dimensional spaces. All we have to do is satisfy the two conditions $R^TR = I$ and $\det R = 1$. Lie shows us that the first condition, $R^TR = I$, is solved immediately by writing $R \simeq I + A$ and requiring $A = -A^T$, namely, that A be antisymmetric. That's it. We could be in a zillion-dimensional space, but still, the rotation group is fixed by requiring A to be antisymmetric.

But it is very easy to write down all possible antisymmetric N-by-N matrices! For N=2, there is only one, namely, the \mathcal{J} introduced earlier. For N=3, there are basically three of them:

$$\mathcal{J}_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \mathcal{J}_y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathcal{J}_z = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{10.10}$$

Any 3-by-3 antisymmetric matrix can be written as $A = \theta_x \mathcal{J}_x + \theta_y \mathcal{J}_y + \theta_z \mathcal{J}_z$, with three real numbers θ_x , θ_y , and θ_z . The three 3-by-3 antisymmetric matrices \mathcal{J}_x , \mathcal{J}_y , \mathcal{J}_z are known as generators. They generate rotations, but are of course not to be confused with rotations, which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

One upshot of this whole discussion is that any 3-dimensional rotation (not necessarily infinitesimal) can be written as

$$R(\theta) = e^{\theta_x \mathcal{J}_x + \theta_y \mathcal{J}_y + \theta_z \mathcal{J}_z} = e^{\Sigma_i \theta_i \mathcal{J}_i}$$
(10.11)

(with i = x, y, z) and is thus characterized by three real numbers θ_x , θ_y , and θ_z . As I said, those readers who have suffered through the rotation of a rigid body in a course on mechanics surely would appreciate the simplicity of studying the generators of infinitesimal rotations and then simply exponentiating them.

To mathematicians, physicists often appear to use weird notations. There is not an i in sight, yet physicists are going to stick one in now. If you have studied quantum mechanics, you know that the generators \mathcal{J} of rotation studied here are related to angular momentum operators. You would also know that in quantum mechanics observables are represented by hermitean operators

or matrices. In contrast, in our discussion, the \mathcal{J} s come out naturally as real antisymmetric matrices and are thus antihermitean. To make them hermitean, we multiply them by some multiples of the imaginary unit i. Thus, define

$$J_x \equiv -i\mathcal{J}_x, \quad J_y \equiv -i\mathcal{J}_y, \quad J_z \equiv -i\mathcal{J}_z$$
 (10.12)

and write a general rotation as

$$R(\theta) = e^{i\Sigma_i \theta_i J_i} = e^{i\theta \cdot J}$$
(10.13)

Treating the three real numbers θ_j and the three matrices J_j as two 3-dimensional vectors.

Exercise: Write down the generators of rotations in 4-dimensional space. At least count how many there are.

10.1.3 Structure constants

In general, rotations do not commute. Following Lie, we could try to capture this essence of group multiplication by focusing on infinitesimal rotations.

Let $R \simeq I + A$ be an infinitesimal rotation. For an arbitrary rotation R', consider

$$RR'R^{-1} \simeq (I+A)R'(I-A) \simeq R' + AR' - R'A$$
 (10.14)

(where we have consistently ignored terms of order A^2). If rotations commute, then $RR'R^{-1}$ would be equal to R'. Thus, the extent to which this is not equal to R' measures the lack of commutativity. Now, suppose R' is also an infinitesimal rotation $R' \simeq I + B$. Then

$$RR'R^{-1} \simeq I + B + AB - BA$$
 (10.15)

which differs from $R' \simeq I + B$ by the matrix

$$[A, B] \equiv AB - BA, \tag{10.16}$$

known as the commutator between A and B.

For SO(3), for example, A is a linear combination of the Js, which we shall call the generators of the Lie algebra of SO(3). Thus, we can write

$$A = i\Sigma_i \theta_i J_i$$
 and similarly $B = i\Sigma_j \theta_j' J_j$. (10.17)

Hence

$$[A,B] = i^2 \Sigma_{ij} \theta_i \theta_j' [J_i, J_j], \qquad (10.18)$$

and so it suffices to calculate the commutators $\left[J_i,J_j\right]$ once and for all.

Lie's great insight is that the preceding discussion holds for any group whose elements $g(\theta_1, \theta_2, \cdots)$ are labeled by a set of continuous parameters such that $g(0, 0, \cdots)$ is the identity I. (For example, the continuous parameters would be the angles θ_i , i = 1, 2, 3 in the case of SO(3).) For these groups, now known as Lie groups, this is what you do in four easy steps:

- 1. Expand the group elements around the identity by letting the continuous parameters go to zero: $g \simeq I + A$.
- 2. Write $A = i \sum_a \theta_a T_a$ as a linear combination of the generators T_a as determined by the nature of the group.

3. Pick two group elements near the identity: $g_1 \simeq I + A$ and $g_2 \simeq I + B$. Then

$$g_1g_2g_1^{-1} \simeq I + B + [A, I + B] \simeq I + B + [A, B].$$

The commutator [A, B] captures the essence of the group near the identity.

4. As in step 2, we can write $B = i \sum_b \theta_b' T_b$ as a linear combination of the generators T_b . Similarly, we can write [A, B] as a linear combination of the generators T_c . (We know this because, for g_1 and g_2 near the identity, $g_1 g_2 g_1^{-1}$ is also near the identity.) Plugging in, we then arrive at the analog of (10.18) for any continuous group, namely, the commutation relations

$$[T_a, T_b] = i f_{abc} T_c \tag{10.19}$$

The commutator between any two generators can be written as a linear combination of the generators.

The commutation relations between the generators define a *Lie algebra*, with f_{abc} referred to as the *structure constants* of the algebra.

For example, for SO(3) we have that

$$[J_x, J_y] = iJ_z, \quad [J_y, J_z] = iJ_x, \quad [J_z, J_x] = iJ_y.$$
 (10.20)

Therefore, we have that $f_{abc} = \epsilon_{abc}$ where ϵ_{abc} is the Levi-Civita symbol. These coefficients, i.e., the statement that $f_{abc} = \epsilon_{abc}$, can thus be used to identify the algebra of SO(3).

Before we move on, let's just take a step back for a second and summarise the jargon we've introduced implicitly introduced in the previous sections.

- A Lie algebra g is a linear space spanned by linear combinations $\sum_i \theta_i \mathcal{J}_i$ of the generators of the associated Lie group G.
- In particular, as Lie groups are differentiable, it is always possible to write an element g of a Lie group G as the exponential of an element J of the corresponding Lie Algebra \mathfrak{g} . That is,

$$\mathfrak{g} = \{J|e^{iJ} \in G\}. \tag{10.21}$$

• The commutation relations of the generators J_j (i.e., a basis for \mathfrak{g}) are the *structure* constants of the group and can be used to identify the Lie Algebra \mathfrak{g} (and thereby the corresponding Lie group G).

In practise, similarly to the case with groups, as physicists we are often more comfortable working with representations of the generators (i.e, a basis) of the Lie Algebra (or just a representation the Lie algebra) than with the Lie Algebra itself.

So, what does it mean to represent the Lie algebra? It means that we are to find matrices such that the commutation relations that define an algebra are satisfied.

In fact, for SO(2) and SO(3) in the proceeding section, we already wrote down representations of these algebras, namely a 2D representation of SO(2) and then a 3D representation of SO(3),

before identifying the structure constants that more abstractly identify the algebra. For example, in the case of SO(3), three matrices J_x, J_y , and J_z such that the commutation relations are satisfied are specified in (10.20).

But note, as with groups, there are multiple possible representations possible for an algebra. We will explore some alternative higher dimensional representations of SO(3) in Section 10.2.

A word of clarification. Strictly speaking, we should distinguish the matrices representing the abstract operators J_x, J_y , and J_z from the abstract operators (that satisfy $f_{abc} = \epsilon_{abc}$) themselves. But it would only clutter up things if we introduce more notation. Instead, we follow the physicist's sloppy practice of using J_x, J_y , and J_z also to denote the matrices representing the abstract operators J_x, J_y , and J_z . Similarly, the Lie Algebra and Lie Group as often represented using lower case mathfrak (e.g., $\mathfrak{so}(3)$) and upper case (e.g., SO(3)) letters respectively. But again, when it is unambiguous we'll just use upper case letters for both cases.

A note on the relation between representations of Lie groups and Lie algebras...

You may well have noticed that as rotations are given by exponentials of linear combinations of the Js, exponentiating the representations of the SO(3) algebra lead to matrices representing the SO(3) rotation group... or, turning this around, if we take a single parameter subgroup of SO(3), e.g., e^{-iJ_x} and look at its derivative at $\theta = 0$ we will get a representation of one of the basis elements of the algebra, e.g.,

$$\frac{d}{d\theta}e^{-iJ_x}\Big|_{\theta=0} = -iJ_x. \tag{10.22}$$

Or even more explicitly any rotation in 3D can be decomposed into rotations around the x, y and z axes respectively:

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(10.23)

and we can quickly check that differentiating each of these does give back the generators calculated earlier. For example,

$$\frac{d}{d\theta}R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = -iJ_x.$$
 (10.24)

In fact, you can always get a representation of an algebra in this manner from a representation of the group.

Concretely, let G be a matrix Lie group with Lie algebra \mathfrak{g} . If R is a representation of G on V, then there exists a unique representation r of \mathfrak{g} on V given by

$$r(X) = \frac{d}{dt} (R(e^{\theta X})) \Big|_{\theta=0}$$
, for all $X \in \mathfrak{g}$.

We call r the representation of \mathfrak{g} induced by R.

However, the converse is not always true. You do not always get a representation of the group on exponentiation. You do for most groups - namely simply connected groups. But there are representations of non-simply connected groups where this is not strictly true. We're not going to dive down this conceptually fiddly rabbit hole in this course.

This is non-examinable. For completeness we note that a mathematician might define a Lie algebra more abstractly as a vector space \mathfrak{g} over a field $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$ (for us usually over \mathbb{C}) with a Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, which satisfies the following axioms holding for all $X_1, X_2, X_3 \in \mathfrak{g}$ and $a, b \in \mathbb{F}$,

- 1. Antisymmetry: $[X_1, X_2] = -[X_2, X_1]$.
- 2. Bilinearity: $[aX_1 + bX_2, X_3] = a[X_1, X_3] + b[X_2, X_3]$.
- 3. Jacobi Identity: $[[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] = 0$.

The standard commutator [A, B] = AB - BA satisfies this properties and is generally the only Lie bracket that will matter in most quantum settings.

10.1.4 Rotations in Higher Dimensions

With your experience with (10.10) and (10.6), it is now a cinch for you to generalize and write down a complete set of antisymmetric N-by-N matrices.

Start with an N-by-N matrix with 0 everywhere. Stick a 1 into the m-th row and n-th column; due to antisymmetry, you are obliged to put a -1 into the n-th row and m-th column. Call this antisymmetric matrix $\mathcal{J}_{(mn)}$. We put the subscripts (mn) in parentheses to emphasize that (mn) labels the matrix. They are not indices to tell us which element of the matrix we are talking about. As explained before, physicists like Hermite a lot and throw in a -i to define the hermitean matrices $J_{(mn)} = -i\mathcal{J}_{(mn)}$. Explicitly,

$$(J_{(mn)})^{ij} = -i(\delta^{mi}\delta^{nj} - \delta^{mj}\delta^{ni}). \tag{10.25}$$

To repeat, in the symbol $(J_{(mn)})^{ij}$, which we will often write as $J_{(mn)}^{ij}$ for short, the indices i and j indicate, respectively, the row and column of the entry $(J_{(mn)})^{ij}$ of the matrix $J_{(mn)}$, while the indices m and n, which I put in parentheses for pedagogical clarity, indicate which matrix we are talking about. The first index m on $J_{(mn)}$ can take on N values, and then the second index n can take on only (N-1) values, since, evidently, $J_{(mn)} = 0$. Also, since $J_{(nm)} = -J_{(mn)}$, we require m > n to avoid double counting. Thus, there are only $\frac{1}{2}N(N-1)$ real antisymmetric N-by-N matrices $J_{(mn)}$. The Kronecker deltas in (10.25) merely say what we said in words in the preceding paragraph.

As before, an infinitesimal rotation is given by $R \simeq I + A$ with the most general A a linear combination of the $J_{(mn)}$ s: $A = i \sum_{m,n} \theta_{(mn)} J_{(mn)}$, where the antisymmetric coefficients $\theta_{(mn)} = -\theta_{(nm)}$ denote $\frac{1}{2}N(N-1)$ generalized angles. (As a check, for N=2 and 3, $\frac{1}{2}N(N-1)$ equals 1 and 3, respectively.) The matrices $J_{(mn)}$ are the generators of the group SO(N).

Our next task is to work out the Lie algebra for SO(N), namely, the commutators between the $J_{(mn)}$ s. You could simply plug in (10.25) and chug away. But a more elegant approach is to work out SO(4) as an inspiration for the general case. First, $[J_{(12)}, J_{(34)}] = 0$, as you might expect,

since rotations in the (1-2) plane and in the (3-4) plane are like gangsters operating on different turfs. Next, we tackle $[J_{(23)}, J_{(31)}]$. Notice that the action takes place entirely in the SO(3) subgroup of SO(4), and so we already know the answer: $[J_{(23)}, J_{(31)}] = [J_x, J_y] = iJ_z = iJ_{(12)}$. These two examples, together with antisymmetry $J_{(mn)} = -J_{(nm)}$, in fact take care of all possible cases. In the commutator $[J_{(mn)}, J_{(pq)}]$, there are three possibilities for the index sets (mn) and (pq): (i) they have no integer in common, (ii) they have one integer in common, or (iii) they have two integers in common. The commutator vanishes in cases (i) and (iii), for trivial (but different) reasons. In case (ii), suppose m = p with no loss of generality, then the commutator is equal to $iJ_{(nq)}$.

We obtain, for any N,

$$[J_{(mn)}, J_{(pq)}] = i(\delta_{mp}J_{(nq)} + \delta_{nq}J_{(mp)} - \delta_{np}J_{(mq)} - \delta_{mq}J_{(np)})$$
(10.26)

This may look rather involved to the uninitiated, but in fact it simply states in mathematical symbols the last three sentences of the preceding paragraph. First, on the right-hand side, a linear combination of the Js (as required by the general argument above) is completely fixed by the first term by noting that the left-hand side is antisymmetric under three separate interchanges: $m \leftrightarrow n$, $p \leftrightarrow q$, and $(mn) \leftrightarrow (pq)$. Next, all those Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in common, then the commutator vanishes. If they do have an integer in common, simply "cross off" that integer. For example, $[J_{(12)}, J_{(14)}] = iJ_{(24)}$ and $[J_{(23)}, J_{(31)}] = -iJ_{(21)} = iJ_{(12)}$.

10.2 Lie Algebra of SO(3) and Ladder Operators: Creation and Annihilation (A trimmed copy of (IV.2 of GTNFP))

In this section we will consider higher dimensional representations of SO(3) and then look into how to find its irreducible representations. This should, similarly to the previous section, feel very familiar. You were essentially already shown how to do this when you were first introduced to quantum angular momentum! However, walking through this carefully will give us the tools we need in the next section to tackle the irreducible representations of tensor product reps of SO(3) more carefully (i.e., re-study the additional of angular momentum).

10.2.1 Ladder operators are useful (a recap of stuff you've seen before)

Since the three generators J_x, J_y , and J_z do not commute, they cannot be simultaneously diagonalized, as explained in the review of linear algebra. But we can diagonalize one of them. Choose J_z , and work in a basis in which J_z is diagonal.

The move that breaks the problem wide open should be very familiar to you: it is akin to going from the 2-dimensional coordinates x, y to the complex variable $z = x + iy, z^* = x - iy$, and from a transversely polarized electromagnetic wave to a circularly polarized electromagnetic wave. Define $J_{\pm} \equiv J_x \pm iJ_y$. Then we can rewrite (10.20) as

$$[J_z, J_{\pm}] = \pm J_{\pm}, \quad [J_+, J_-] = 2J_z.$$
 (10.27)

Write the eigenvector of J_z with eigenvalue m as $|m\rangle$; in other words,

$$J_z|m\rangle = m|m\rangle. \tag{10.28}$$

Since J_z is hermitean, m is a real number. What we are doing is going to a basis in which J_z is diagonal; according to (10.27), J_{\pm} cannot be diagonal in this basis. Now consider the state $J_{\pm}|m\rangle$ and act on it with J_z :

$$J_z J_+ |m\rangle = (J_+ J_z + [J_z, J_+])|m\rangle = (J_+ J_z + J_+)|m\rangle = (m+1)J_+|m\rangle, \tag{10.29}$$

where the second equality follows from (10.27). (Henceforth, we will be using (10.27) repeatedly without bothering to refer to it.)

Thus, $J_{+}|m\rangle$ is an eigenvector (or eigenstate; these terms are used interchangeably) of J_z with eigenvalue m + 1. Hence, by the definition of $|m\rangle$, the state $J_{+}|m\rangle$ must be equal to the state $|m + 1\rangle$ multiplied by some normalization constant; in other words, we have

$$J_{+}|m\rangle = c_{m+1}|m+1\rangle,$$
 (10.30)

with the complex number c_{m+1} to be determined. Similarly,

$$J_z J_- |m\rangle = (J_- J_z + [J_z, J_-])|m\rangle = (J_- J_z - J_-)|m\rangle = (m-1)J_-|m\rangle,$$
 (10.31)

from which we conclude that

$$J_{-}|m\rangle = b_{m-1}|m-1\rangle,$$
 (10.32)

with some other unknown normalization constant.

It is very helpful to think of the states \cdots , $|m-1\rangle$, $|m\rangle$, $|m+1\rangle$, \cdots as corresponding to rungs on a ladder. The result $J_{+}|m\rangle = c_{m+1}|m+1\rangle$ tells us that we can think of J_{+} as a "raising operator" that enables us to climb up one rung on the ladder, going from $|m\rangle$ to $|m+1\rangle$. Similarly, the result $J_{-}|m\rangle = b_{m-1}|m-1\rangle$ tells us to think of J_{-} as a "lowering operator" that enables us to climb down one rung on the ladder. Collectively, J_{\pm} are referred to as ladder operators.

To relate b_m to c_m , we invoke the hermiticity of J_x, J_y , and J_z , which implies that

$$(J_{+})^{\dagger} = (J_{x} + iJ_{y})^{\dagger} = J_{x} - iJ_{y} = J_{-}.$$

Multiplying $J_{+}|m\rangle = c_{m+1}|m+1\rangle$ from the left by $\langle m+1|$ and normalizing the states by $\langle m|m\rangle = 1$, we obtain

$$\langle m+1|J_+|m\rangle = c_{m+1}$$
.

Complex conjugating this gives us $c_{m+1}^* = \langle m|J_-|m+1\rangle = b_m$, that is, $b_{m-1} = c_m^*$, so that we can write

$$J_{-}|m\rangle = c_m^*|m-1\rangle.$$

Acting on this with J_+ gives

$$J_{+}J_{-}|m\rangle = c_{m}^{*}J_{+}|m-1\rangle = |c_{m}|^{2}|m\rangle.$$

Similarly, acting with J_-J_+ on $|m\rangle$ gives

$$J_-J_+|m\rangle = c_{m+1}|m+1\rangle \implies |c_{m+1}|^2|m\rangle.$$

Since we know that the representation is finite dimensional, the ladder must terminate, that is, there must be a top rung. So, call the maximum value of m by j. At this stage, all we know is that j is a real number. (Note that we have not assumed that m is an integer.) Thus, there is a state $|j\rangle$ such that $J_+|j\rangle = 0$. It corresponds to the top rung of the ladder.

At this point, we have only used the first part of (10.27). Now we use the second half:

$$\langle j|J_{+}J_{-}|j\rangle = \langle j|J_{-}J_{+} - 2J_{z}|j\rangle = |c_{j}|^{2} - 2j,$$

thus determining $|c_i|^2 = 2j$. Furthermore,

$$\langle m|J_+J_-|m\rangle = \langle m|(J_+J_--J_-J_+)|m\rangle = |c_m|^2 - |c_{m+1}|^2 = 2m.$$

We obtain a recursion relation

$$|c_m|^2 = |c_{m+1}|^2 + 2m$$
,

which, together with $|c_j|^2 = 2j$, allows us to determine the unknown $|c_m|$. Here we go:

$$|c_{j-1}|^2 = |c_j|^2 + 2(j-1) = 2(2j-1),$$

then

$$|c_{j-2}|^2 = |c_{j-1}|^2 + 2(j-2) = 2(3j-1-2),$$

and eventually

$$|c_{j-s}|^2 = 2((s+1)j - \sum_{i=1}^s i).$$

Recall the Gauss formula $\sum_{i=1}^{s} i = \frac{1}{2}s(s+1)$, and obtain

$$|c_{j-s}|^2 = 2((s+1)j - \frac{1}{2}s(s+1)) = (s+1)(2j-s).$$

We keep climbing down the ladder, increasing s by 1 at each step. When s = 2j, we see that c_{-j} vanishes. We have reached the bottom of the ladder. More explicitly, we have

$$J_{-}|-j\rangle = c_{-j}^{*}|-j-1\rangle = 0,$$

according to what we just derived. The minimum value of m is -j. Since s counts the number of rungs climbed down, it is necessarily an integer, and thus the condition s=2j that the ladder terminates implies that j is either an integer or a half-integer, depending on whether s is even or odd. If the ladder terminates, then we have the set of states $|-j\rangle, |-j+1\rangle, \dots, |j-1\rangle, |j\rangle$, which totals 2j+1 states.

For example, for j=2, these states are $|-2\rangle, |-1\rangle, |0\rangle, |1\rangle, |2\rangle$. Starting from $|2\rangle$, we apply J_{-} four times to reach $|-2\rangle$. (We will do this explicitly later in this chapter.) To emphasize the dependence on j, we sometimes write the kets $|m\rangle$ as $|j,m\rangle$. Notice that the ladder is symmetric under $|m\rangle \rightarrow |-m\rangle$, a symmetry that can be traced to the invariance of the algebra in (10.20) under $J_x \rightarrow J_x$, $J_y \rightarrow -J_y$, and $J_z \rightarrow -J_z$ (namely, a rotation through π around the x-axis).

Mysterious Appearance of the Half-Integers. But what about the representations of the algebra corresponding to j = a half-integer? For example, for $j = \frac{1}{2}$, we have a $2 \cdot \frac{1}{2} + 1 = 2$ -dimensional representation consisting of the states $\left|-\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2}\right\rangle$. We climb down from $\left|\frac{1}{2}\right\rangle$ to $\left|-\frac{1}{2}\right\rangle$ in one step. Certainly no sight of a 2-dimensional representation in chapter I.3! The mystery of the $j = \frac{1}{2}$ representation will be resolved in chapter IV.5 when we discuss SU(2), but let's not be coy about it and keep the reader in suspense. I trust that most readers have heard that it describes the electron spin. We did not go looking for the peculiar number, it came looking for us.

It should not escape your notice that as a by-product of requiring the ladder to terminate, we have also determined $|c_m|^2$. Indeed, setting s = j - m, we had $|c_m|^2 = (j + m)(j - m + 1)$. Recalling the definition of c_m , we obtain

$$J_{+}|m\rangle = c_{m+1}|m+1\rangle = \sqrt{(j+1+m)(j-m)}|m+1\rangle.$$
 (10.33)

and

$$J_{-}|m\rangle = c_{m}^{*}|m-1\rangle = \sqrt{(j+1-m)(j+m)}|m-1\rangle.$$
 (10.34)

As a mild check on the arithmetic, indeed $J_+|j\rangle = 0$ and $J_-|-j\rangle = 0$. You might also have noticed that, quite rightly, the phase of c_m is not determined, since it is completely up to us to choose the relative phase of the kets $|m\rangle$ and $|m-1\rangle$. Beware that different authors choose differently. I simply take c_m to be real and positive. Tables of the c_m s for various js are available, but it's easy enough to write them down when needed. Note also that the square roots in (10.33) and (10.34) are related by $m \leftrightarrow -m$.

Example of ladder operators. For convenience, let's list here the two most common cases needed in physics. For $j = \frac{1}{2}$:

$$J_{+} \left| -\frac{1}{2} \right\rangle = \left| \frac{1}{2} \right\rangle, \quad J_{-} \left| \frac{1}{2} \right\rangle = \left| -\frac{1}{2} \right\rangle. \tag{10.35}$$

For j = 1:

$$J_{+}|-1\rangle = \sqrt{2}|0\rangle, \quad J_{+}|0\rangle = \sqrt{2}|1\rangle, \quad J_{-}|1\rangle = \sqrt{2}|0\rangle, \quad J_{-}|0\rangle = \sqrt{2}|-1\rangle.$$
 (10.36)

Note that the (nonzero) c_m for these two cases are particularly easy to remember (that is, if for some odd reason you want to): they are all 1 in one case, and $\sqrt{2}$ in the other. Let us also write down the j=2 case for later use:

$$J_{+}|-2\rangle = \sqrt{2}|-1\rangle, \quad J_{+}|-1\rangle = \sqrt{6}|0\rangle, \quad J_{+}|0\rangle = \sqrt{6}|1\rangle, \quad J_{+}|1\rangle = \sqrt{2}|2\rangle,$$

$$J_{-}|2\rangle = \sqrt{2}|1\rangle, \quad J_{-}|1\rangle = \sqrt{6}|0\rangle, \quad J_{-}|0\rangle = \sqrt{6}|-1\rangle, \quad J_{-}|-1\rangle = \sqrt{2}|-2\rangle.$$
(10.37)

So you did all of this before in QP1 and might be wondering what is new so what have you learnt from this? We'll we've implicitly figured out how to write J_+ and J_- , and thereby also J_+ and J_- in a 2j+1 dimensional basis working only from the known commutation relationships between J_x , J_y and J_z . Or, in group theoretic language, from the structure constants that define the Lie Algebra of 3D rotations, SO(3), we have computed a 2j+1 dimensional representation of the SO(3) Lie algebra.