
Chapter 10

Lie Algebras/Angular momentum

This chapter sits between an introduction to Lie Algebra and a recap of angular momentum
and the addition of angular momentum. For those of you who are already comfortable with
all things angular momentum this chapter is intended to expose you to the deep mathematics
underlying these topics to provide you with a fresh perspective and equip you for future forays
into the world of Lie Algebras. That said, for those of you who are fed up of group theory by
this point and/or are perhaps a little rusty when it comes to the addition of angular momentum
you should be able to largely ignore the group theory and reason your way through these topics
based on physical intuition.

There are two main topics we will cover. Firstly, we will introduce the Lie algebras by looking
at the example of rotations. In doing so, we will rediscover a lot of what you already know
about angular momentum (but frame it slightly different language). Secondly, we will discuss
the addition of angular momentum and the relationship between this and the irreducible rep-
resentations of tensor product representations of rotation groups. In both parts I will closely
follow Group Theory in a Nutshell for Physicists (GTNFP). I’m going to copy the most relevant
sections here for your convenience (making only minor tweaks) but you might prefer to go and
read directly from there.

10.1 Intro to Lie Algebras via Rotations. An trimmed copy of
I.3 in GTNFP

10.1.1 A little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious but
brilliant idea that to rotate through, say, 29○, you could just as well rotate through a zillionth of
a degree and repeat the process 29 zillion times. To study rotations, it suffices to study rotation
through infinitesimal angles. Shades of Newton and Leibniz! A rotation through a finite angle
can always be obtained by performing infinitesimal rotations repeatedly. As is typical with many
profound statements in physics and mathematics, Lie’s idea is astonishingly simple. Replace the
proverb “Never put off until tomorrow what you have to do today” by “Do what you have to do
a little bit at a time.”

A rotation through an infinitesimal angle θ is almost the identity I, that is, no rotation at all,
and so can be written as

R(θ) ≃ I +A (10.1)
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CHAPTER 10. LIE ALGEBRAS/ANGULAR MOMENTUM Quantum Physics II

Here A denotes some infinitesimal matrix of order θ. The neglected terms in (10.1) are of order
θ2 and smaller.

Let us imagine Lie saying to himself, “Pretend that I slept through trigonometry class and I
don’t know anything about how rotation matrices look. Instead, I will define rotations as the
set of linear transformations on 2-component objects u′ = Ru and v′ = Rv that leave uT ⋅ v
invariant. I will impose

RTR = I (10.2)

and derive (10.1). But according to my brilliant idea, it suffices to solve this condition for
rotations infinitesimally close to the identity.”

Following Lie, we plug R ≃ I +A into (10.2). Since by assumption A2, being of order θ2, can be
neglected relative to A, we have

RTR ≃ (I +AT )(I +A) ≃ (I +AT +A) = I (10.3)

Thus, this requires AT = −A, namely, that A must be antisymmetric.

But there is basically only one 2 × 2 antisymmetric matrix:

J = ( 0 1
−1 0) (10.4)

In other words, the solution of AT = −A is A = θJ for some real number θ. Thus, rotations close
to the identity have the form

R = I + θJ +O(θ2) = ( 1 θ
−θ 1) +O(θ

2) (10.5)

The antisymmetric matrix J is known as the generator of the rotation group. We obtain,
without knowing any trigonometry, that under an infinitesimal rotation, x → x′ ≃ x + θy, and
y → y′ ≃ −θx + y, which is of course consistent with (10.5). We could also obtain this result by
drawing an elementary geometrical figure involving infinitesimal angles.

Now recall the identity ex = limN→∞(1+ x
N )

N (which you can easily prove by differentiating both
sides). Then, for a finite (that is, not infinitesimal) angle θ, we have

R(θ) = lim
N→∞

(R( θ
N
))

N

= lim
N→∞

(1 + θJ
N
)
N

= eθJ (10.6)

The first equality represents Lie’s profound idea: we cut up the given noninfinitesimal angle
θ into N pieces so that θ/N is infinitesimal for N large enough and perform the infinitesimal
rotation N times. The second equality is just (10.5). For the last equality, we use the identity
just mentioned, which amounts to the definition of the exponential.

As an alternative but of course equivalent path to our result, simply assert that we have every
right, to leading order, to write R ( θN ) = 1 + θJ

N ≃ e
θJ
N . Thus

R(θ) = lim
N→∞

(R( θ
N
))

N

= lim
N→∞

(e
θJ
N )

N
= eθJ (10.7)

In calculus, we learned about the Taylor or power series. Taylor said that if we gave him all the
derivatives of a function f(x) at x = 0 (say), he could construct the function. In contrast, Lie
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said that, thanks to the multiplicative group structure, he only needs the first derivative of the
group element R(θ) near the identity. Indeed, we recognize that J is just dR(θ)

dθ
∣
θ=0. The reason

that Lie needs so much less is of course that the group structure is highly restrictive.

Finally, we can check that the formula R(θ) = eθJ reproduces (10.5) for any value of θ. We
simply note that J 2 = −I and separate the exponential series, using Taylor’s idea, into even and
odd powers of J :

eθJ =
∞
∑
n=0

θnJ n
n!
= (

∞
∑
k=0

(−1)kθ2k

(2k)! ) I + (
∞
∑
k=0

(−1)kθ2k+1

(2k + 1)! )J (10.8)

which simplifies to

eθJ = cos θ I + sin θJ = cos θ (1 0
0 1) + sin θ ( 0 1

−1 0) = (
cos θ sin θ
− sin θ cos θ) (10.9)

which is the familiar rotation matrix in 2D that you probably derived for yourself back in high
school using trigonometry. Note that this works, because J plays the same role as i in Euler’s
identity eiθ = cos θ + i sin θ.

10.1.2 Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher-dimensional
spaces. All we have to do is satisfy the two conditions RTR = I and detR = 1. Lie shows us that
the first condition, RTR = I, is solved immediately by writing R ≃ I +A and requiring A = −AT ,
namely, that A be antisymmetric. That’s it. We could be in a zillion-dimensional space, but
still, the rotation group is fixed by requiring A to be antisymmetric.

But it is very easy to write down all possible antisymmetric N -by-N matrices! For N = 2, there
is only one, namely, the J introduced earlier. For N = 3, there are basically three of them:

Jx =
⎛
⎜
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎟
⎠
, Jy =

⎛
⎜
⎝

0 0 −1
0 0 0
1 0 0

⎞
⎟
⎠
, Jz =

⎛
⎜
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎟
⎠

(10.10)

Any 3-by-3 antisymmetric matrix can be written as A = θxJx + θyJy + θzJz, with three real
numbers θx, θy, and θz. The three 3-by-3 antisymmetric matrices Jx, Jy, Jz are known as
generators. They generate rotations, but are of course not to be confused with rotations, which
are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

One upshot of this whole discussion is that any 3-dimensional rotation (not necessarily infinites-
imal) can be written as

R(θ) = eθxJx+θyJy+θzJz = eΣiθiJi (10.11)

(with i = x, y, z) and is thus characterized by three real numbers θx, θy, and θz. As I said, those
readers who have suffered through the rotation of a rigid body in a course on mechanics surely
would appreciate the simplicity of studying the generators of infinitesimal rotations and then
simply exponentiating them.

To mathematicians, physicists often appear to use weird notations. There is not an i in sight,
yet physicists are going to stick one in now. If you have studied quantum mechanics, you know
that the generators J of rotation studied here are related to angular momentum operators. You
would also know that in quantum mechanics observables are represented by hermitean operators
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or matrices. In contrast, in our discussion, the J s come out naturally as real antisymmetric
matrices and are thus antihermitean. To make them hermitean, we multiply them by some
multiples of the imaginary unit i. Thus, define

Jx ≡ −iJx, Jy ≡ −iJy, Jz ≡ −iJz (10.12)

and write a general rotation as
R(θ) = eiΣiθiJi = eiθ⋅J (10.13)

Treating the three real numbers θj and the three matrices Jj as two 3-dimensional vectors.

Exercise: Write down the generators of rotations in 4-dimensional space. At least count how
many there are.

10.1.3 Structure constants

In general, rotations do not commute. Following Lie, we could try to capture this essence of
group multiplication by focusing on infinitesimal rotations.

Let R ≃ I +A be an infinitesimal rotation. For an arbitrary rotation R′, consider

RR′R−1 ≃ (I +A)R′(I −A) ≃ R′ +AR′ −R′A (10.14)

(where we have consistently ignored terms of order A2). If rotations commute, then RR′R−1

would be equal to R′. Thus, the extent to which this is not equal to R′ measures the lack of
commutativity. Now, suppose R′ is also an infinitesimal rotation R′ ≃ I +B. Then

RR′R−1 ≃ I +B +AB −BA (10.15)

which differs from R′ ≃ I +B by the matrix

[A,B] ≡ AB −BA, (10.16)

known as the commutator between A and B.

For SO(3), for example, A is a linear combination of the Js, which we shall call the generators
of the Lie algebra of SO(3). Thus, we can write

A = iΣiθiJi and similarly B = iΣjθ
′
jJj . (10.17)

Hence
[A,B] = i2Σijθiθ

′
j[Ji, Jj], (10.18)

and so it suffices to calculate the commutators [Ji, Jj] once and for all.

Lie’s great insight is that the preceding discussion holds for any group whose elements g(θ1, θ2,⋯)
are labeled by a set of continuous parameters such that g(0,0,⋯) is the identity I. (For example,
the continuous parameters would be the angles θi, i = 1,2,3 in the case of SO(3).) For these
groups, now known as Lie groups, this is what you do in four easy steps:

1. Expand the group elements around the identity by letting the continuous parameters go
to zero: g ≃ I +A.

2. Write A = i∑a θaTa as a linear combination of the generators Ta as determined by the
nature of the group.
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3. Pick two group elements near the identity: g1 ≃ I +A and g2 ≃ I +B. Then

g1g2g
−1
1 ≃ I +B + [A, I +B] ≃ I +B + [A,B].

The commutator [A,B] captures the essence of the group near the identity.

4. As in step 2, we can write B = i∑b θ′bTb as a linear combination of the generators Tb.
Similarly, we can write [A,B] as a linear combination of the generators Tc. (We know this
because, for g1 and g2 near the identity, g1g2g

−1
1 is also near the identity.) Plugging in, we

then arrive at the analog of (10.18) for any continuous group, namely, the commutation
relations

[Ta, Tb] = ifabcTc (10.19)

The commutator between any two generators can be written as a linear combination of
the generators.

The commutation relations between the generators define a Lie algebra, with fabc referred to as
the structure constants of the algebra.

For example, for SO(3) we have that

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy. (10.20)

Therefore, we have that fabc = ϵabc where ϵabc is the Levi-Civita symbol. These coefficients, i.e.,
the statement that fabc = ϵabc , can thus be used to identify the algebra of SO(3).

Before we move on, let’s just take a step back for a second and summarise the jargon we’ve
introduced implicitly introduced in the previous sections.

• A Lie algebra g is a linear space spanned by linear combinations ∑i θiJi of the generators
of the associated Lie group G.

• In particular, as Lie groups are differentiable, it is always possible to write an element g
of a Lie group G as the exponential of an element J of the corresponding Lie Algebra g.
That is,

g = {J ∣eiJ ∈ G} . (10.21)

• The commutation relations of the generators Jj (i.e., a basis for g) are the structure
constants of the group and can be used to identify the Lie Algebra g (and thereby the
corresponding Lie group G).

In practise, similarly to the case with groups, as physicists we are often more comfortable working
with representations of the generators (i.e, a basis) of the Lie Algebra (or just a representation
the Lie algebra) than with the Lie Algebra itself.

So, what does it mean to represent the Lie algebra? It means that we are to find matrices such
that the commutation relations that define an algebra are satisfied.

In fact, for SO(2) and SO(3) in the proceeding section, we already wrote down representations
of these algebras, namely a 2D representation of SO(2) and then a 3D representation of SO(3),
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before identifying the structure constants that more abstractly identify the algebra. For exam-
ple, in the case of SO(3), three matrices Jx, Jy, and Jz such that the commutation relations are
satisfied are specified in (10.20).

But note, as with groups, there are multiple possible representations possible for an algebra.
We will explore some alternative higher dimensional representations of SO(3) in Section 10.2.

A word of clarification. Strictly speaking, we should distinguish the matrices representing the
abstract operators Jx, Jy, and Jz from the abstract operators (that satisfy fabc = ϵabc) them-
selves. But it would only clutter up things if we introduce more notation. Instead, we follow the
physicist’s sloppy practice of using Jx, Jy, and Jz also to denote the matrices representing the
abstract operators Jx, Jy, and Jz. Similarly, the Lie Algebra and Lie Group as often represented
using lower case mathfrak (e.g., so(3)) and upper case (e.g., SO(3)) letters respectively. But
again, when it is unambiguous we’ll just use upper case letters for both cases.

A note on the relation between representations of Lie groups and Lie algebras...
You may well have noticed that as rotations are given by exponentials of linear combinations
of the Js, exponentiating the representations of the SO(3) algebra lead to matrices representing
the SO(3) rotation group... or, turning this around, if we take a single parameter subgroup of
SO(3), e.g., e−iJx and look at its derivative at θ = 0 we will get a representation of one of the
basis elements of the algebra, e.g.,

d

dθ
e−iJx ∣

θ=0 = −iJx . (10.22)

Or even more explicitly any rotation in 3D can be decomposed into rotations around the x, y
and z axes respectively:

Rx(θ) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎦
,Ry(θ) =

⎡⎢⎢⎢⎢⎢⎣

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤⎥⎥⎥⎥⎥⎦
,Rz(θ) =

⎡⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
(10.23)

and we can quickly check that differentiating each of these does give back the generators calcu-
lated earlier. For example,

d

dθ
Rx(θ) =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
= −iJx . (10.24)

In fact, you can always get a representation of an algebra in this manner from a representation
of the group.

Concretely, let G be a matrix Lie group with Lie algebra g. If R is a representation of G on V ,
then there exists a unique representation r of g on V given by

r(X) = d

dt
(R(eθX))∣

θ=0
, for all X ∈ g.

We call r the representation of g induced by R.
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However, the converse is not always true. You do not always get a representation of the group
on exponentiation. You do for most groups - namely simply connected groups. But there are
representations of non-simply connected groups where this is not strictly true. We’re not going
to dive down this conceptually fiddly rabbit hole in this course.

This is non-examinable. For completeness we note that a mathematician might define a Lie
algebra more abstractly as a vector space g over a field F ∈ {C,R} (for us usually over C) with
a Lie bracket [⋅, ⋅] ∶ g × g → g, which satisfies the following axioms holding for all X1,X2,X3 ∈ g
and a, b ∈ F,

1. Antisymmetry: [X1,X2] = −[X2,X1].

2. Bilinearity: [aX1 + bX2,X3] = a[X1,X3] + b[X2,X3].

3. Jacobi Identity: [[X1,X2],X3] + [[X2,X3],X1] + [[X3,X1],X2] = 0.

The standard commutator [A,B] = AB −BA satisfies this properties and is generally the only
Lie bracket that will matter in most quantum settings.

10.1.4 Rotations in Higher Dimensions

With your experience with (10.10) and (10.6), it is now a cinch for you to generalize and write
down a complete set of antisymmetric N -by-N matrices.

Start with an N -by-N matrix with 0 everywhere. Stick a 1 into the m-th row and n-th column;
due to antisymmetry, you are obliged to put a −1 into the n-th row and m-th column. Call
this antisymmetric matrix J(mn). We put the subscripts (mn) in parentheses to emphasize that
(mn) labels the matrix. They are not indices to tell us which element of the matrix we are
talking about. As explained before, physicists like Hermite a lot and throw in a −i to define the
hermitean matrices J(mn) = −iJ(mn). Explicitly,

(J(mn))ij = −i(δmiδnj − δmjδni) . (10.25)

To repeat, in the symbol (J(mn))ij , which we will often write as J ij(mn) for short, the indices i and
j indicate, respectively, the row and column of the entry (J(mn))ij of the matrix J(mn), while
the indices m and n, which I put in parentheses for pedagogical clarity, indicate which matrix
we are talking about. The first index m on J(mn) can take on N values, and then the second
index n can take on only (N − 1) values, since, evidently, J(mn) = 0. Also, since J(nm) = −J(mn),
we require m > n to avoid double counting. Thus, there are only 1

2N(N − 1) real antisymmetric
N -by-N matrices J(mn). The Kronecker deltas in (10.25) merely say what we said in words in
the preceding paragraph.

As before, an infinitesimal rotation is given by R ≃ I +A with the most general A a linear combi-
nation of the J(mn)s: A = i∑m,n θ(mn)J(mn), where the antisymmetric coefficients θ(mn) = −θ(nm)
denote 1

2N(N − 1) generalized angles. (As a check, for N = 2 and 3, 1
2N(N − 1) equals 1 and 3,

respectively.) The matrices J(mn) are the generators of the group SO(N).

Our next task is to work out the Lie algebra for SO(N), namely, the commutators between the
J(mn)s. You could simply plug in (10.25) and chug away. But a more elegant approach is to work
out SO(4) as an inspiration for the general case. First, [J(12), J(34)] = 0, as you might expect,
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since rotations in the (1-2) plane and in the (3-4) plane are like gangsters operating on different
turfs. Next, we tackle [J(23), J(31)]. Notice that the action takes place entirely in the SO(3)
subgroup of SO(4), and so we already know the answer: [J(23), J(31)] = [Jx, Jy] = iJz = iJ(12).
These two examples, together with antisymmetry J(mn) = −J(nm), in fact take care of all possible
cases. In the commutator [J(mn), J(pq)], there are three possibilities for the index sets (mn) and
(pq): (i) they have no integer in common, (ii) they have one integer in common, or (iii) they
have two integers in common. The commutator vanishes in cases (i) and (iii), for trivial (but
different) reasons. In case (ii), suppose m = p with no loss of generality, then the commutator is
equal to iJ(nq).

We obtain, for any N ,

[J(mn), J(pq)] = i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (10.26)

This may look rather involved to the uninitiated, but in fact it simply states in mathematical
symbols the last three sentences of the preceding paragraph. First, on the right-hand side, a
linear combination of the Js (as required by the general argument above) is completely fixed
by the first term by noting that the left-hand side is antisymmetric under three separate inter-
changes: m↔ n, p↔ q, and (mn) ↔ (pq). Next, all those Kronecker deltas just say that if the
two sets (mn) and (pq) have no integer in common, then the commutator vanishes. If they do
have an integer in common, simply “cross off” that integer. For example, [J(12), J(14)] = iJ(24)
and [J(23), J(31)] = −iJ(21) = iJ(12).

10.2 Lie Algebra of SO(3) and Ladder Operators: Creation and
Annihilation (A trimmed copy of (IV.2 of GTNFP))

In this section we will consider higher dimensional representations of S0(3) and then look into
how to find its irreducible representations. This should, similarly to the previous section, feel
very familiar. You were essentially already shown how to do this when you were first introduced
to quantum angular momentum! However, walking through this carefully will give us the tools
we need in the next section to tackle the irreducible representations of tensor product reps of
SO(3) more carefully (i.e., re-study the additional of angular momentum).

10.2.1 Ladder operators are useful (a recap of stuff you’ve seen before)

Since the three generators Jx, Jy, and Jz do not commute, they cannot be simultaneously di-
agonalized, as explained in the review of linear algebra. But we can diagonalize one of them.
Choose Jz, and work in a basis in which Jz is diagonal.

The move that breaks the problem wide open should be very familiar to you: it is akin to going
from the 2-dimensional coordinates x, y to the complex variable z = x + iy, z∗ = x − iy, and from
a transversely polarized electromagnetic wave to a circularly polarized electromagnetic wave.
Define J± ≡ Jx ± iJy. Then we can rewrite (10.20) as

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (10.27)

Write the eigenvector of Jz with eigenvalue m as ∣m⟩; in other words,

Jz ∣m⟩ =m∣m⟩. (10.28)
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Since Jz is hermitean, m is a real number. What we are doing is going to a basis in which Jz
is diagonal; according to (10.27), J± cannot be diagonal in this basis. Now consider the state
J+∣m⟩ and act on it with Jz:

JzJ+∣m⟩ = (J+Jz + [Jz, J+])∣m⟩ = (J+Jz + J+)∣m⟩ = (m + 1)J+∣m⟩, (10.29)

where the second equality follows from (10.27). (Henceforth, we will be using (10.27) repeatedly
without bothering to refer to it.)

Thus, J+∣m⟩ is an eigenvector (or eigenstate; these terms are used interchangeably) of Jz with
eigenvalue m + 1. Hence, by the definition of ∣m⟩, the state J+∣m⟩ must be equal to the state
∣m + 1⟩ multiplied by some normalization constant; in other words, we have

J+∣m⟩ = cm+1∣m + 1⟩, (10.30)

with the complex number cm+1 to be determined. Similarly,

JzJ−∣m⟩ = (J−Jz + [Jz, J−])∣m⟩ = (J−Jz − J−)∣m⟩ = (m − 1)J−∣m⟩, (10.31)

from which we conclude that
J−∣m⟩ = bm−1∣m − 1⟩, (10.32)

with some other unknown normalization constant.

It is very helpful to think of the states ⋯, ∣m − 1⟩, ∣m⟩, ∣m + 1⟩,⋯ as corresponding to rungs on a
ladder. The result J+∣m⟩ = cm+1∣m + 1⟩ tells us that we can think of J+ as a "raising operator"
that enables us to climb up one rung on the ladder, going from ∣m⟩ to ∣m + 1⟩. Similarly, the
result J−∣m⟩ = bm−1∣m − 1⟩ tells us to think of J− as a "lowering operator" that enables us to
climb down one rung on the ladder. Collectively, J± are referred to as ladder operators.

To relate bm to cm, we invoke the hermiticity of Jx, Jy, and Jz, which implies that

(J+)† = (Jx + iJy)† = Jx − iJy = J−.

Multiplying J+∣m⟩ = cm+1∣m+1⟩ from the left by ⟨m+1∣ and normalizing the states by ⟨m∣m⟩ = 1,
we obtain

⟨m + 1∣J+∣m⟩ = cm+1.

Complex conjugating this gives us c∗m+1 = ⟨m∣J−∣m + 1⟩ = bm, that is, bm−1 = c∗m, so that we can
write

J−∣m⟩ = c∗m∣m − 1⟩.

Acting on this with J+ gives

J+J−∣m⟩ = c∗mJ+∣m − 1⟩ = ∣cm∣2∣m⟩.

Similarly, acting with J−J+ on ∣m⟩ gives

J−J+∣m⟩ = cm+1∣m + 1⟩ Ô⇒ ∣cm+1∣2∣m⟩.

Since we know that the representation is finite dimensional, the ladder must terminate, that is,
there must be a top rung. So, call the maximum value of m by j. At this stage, all we know is
that j is a real number. (Note that we have not assumed that m is an integer.) Thus, there is
a state ∣j⟩ such that J+∣j⟩ = 0. It corresponds to the top rung of the ladder.
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At this point, we have only used the first part of (10.27). Now we use the second half:

⟨j∣J+J−∣j⟩ = ⟨j∣J−J+ − 2Jz ∣j⟩ = ∣cj ∣2 − 2j,

thus determining ∣cj ∣2 = 2j. Furthermore,

⟨m∣J+J−∣m⟩ = ⟨m∣(J+J− − J−J+)∣m⟩ = ∣cm∣2 − ∣cm+1∣2 = 2m.

We obtain a recursion relation
∣cm∣2 = ∣cm+1∣2 + 2m,

which, together with ∣cj ∣2 = 2j, allows us to determine the unknown ∣cm∣. Here we go:

∣cj−1∣2 = ∣cj ∣2 + 2(j − 1) = 2(2j − 1),

then
∣cj−2∣2 = ∣cj−1∣2 + 2(j − 2) = 2(3j − 1 − 2),

and eventually
∣cj−s∣2 = 2((s + 1)j −

s

∑
i=1
i).

Recall the Gauss formula ∑si=1 i = 1
2s(s + 1), and obtain

∣cj−s∣2 = 2((s + 1)j − 1
2
s(s + 1)) = (s + 1)(2j − s).

We keep climbing down the ladder, increasing s by 1 at each step. When s = 2j, we see that c−j
vanishes. We have reached the bottom of the ladder. More explicitly, we have

J−∣ − j⟩ = c∗−j ∣ − j − 1⟩ = 0,

according to what we just derived. The minimum value of m is −j. Since s counts the number
of rungs climbed down, it is necessarily an integer, and thus the condition s = 2j that the ladder
terminates implies that j is either an integer or a half-integer, depending on whether s is even
or odd. If the ladder terminates, then we have the set of states ∣ − j⟩, ∣ − j + 1⟩, . . . , ∣j − 1⟩, ∣j⟩,
which totals 2j + 1 states.

For example, for j = 2, these states are ∣ − 2⟩, ∣ − 1⟩, ∣0⟩, ∣1⟩, ∣2⟩. Starting from ∣2⟩, we apply J−
four times to reach ∣ − 2⟩. (We will do this explicitly later in this chapter.) To emphasize the
dependence on j, we sometimes write the kets ∣m⟩ as ∣j,m⟩. Notice that the ladder is sym-
metric under ∣m⟩ → ∣ −m⟩, a symmetry that can be traced to the invariance of the algebra in
(10.20) under Jx → Jx, Jy → −Jy, and Jz → −Jz (namely, a rotation through π around the x-axis).

Mysterious Appearance of the Half-Integers. But what about the representations of
the algebra corresponding to j = a half-integer? For example, for j = 1

2 , we have a 2 ⋅ 1
2 + 1 = 2-

dimensional representation consisting of the states ∣−1
2⟩ and ∣12⟩. We climb down from ∣12⟩ to ∣−1

2⟩
in one step. Certainly no sight of a 2-dimensional representation in chapter I.3! The mystery of
the j = 1

2 representation will be resolved in chapter IV.5 when we discuss SU(2), but let’s not
be coy about it and keep the reader in suspense. I trust that most readers have heard that it
describes the electron spin. We did not go looking for the peculiar number, it came looking for us.
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It should not escape your notice that as a by-product of requiring the ladder to terminate, we
have also determined ∣cm∣2. Indeed, setting s = j−m, we had ∣cm∣2 = (j+m)(j−m+1). Recalling
the definition of cm, we obtain

J+∣m⟩ = cm+1∣m + 1⟩ =
√
(j + 1 +m)(j −m)∣m + 1⟩. (10.33)

and
J−∣m⟩ = c∗m∣m − 1⟩ =

√
(j + 1 −m)(j +m)∣m − 1⟩. (10.34)

As a mild check on the arithmetic, indeed J+∣j⟩ = 0 and J−∣−j⟩ = 0. You might also have noticed
that, quite rightly, the phase of cm is not determined, since it is completely up to us to choose
the relative phase of the kets ∣m⟩ and ∣m − 1⟩. Beware that different authors choose differently.
I simply take cm to be real and positive. Tables of the cms for various js are available, but it’s
easy enough to write them down when needed. Note also that the square roots in (10.33) and
(10.34) are related by m↔ −m.

Example of ladder operators. For convenience, let’s list here the two most common cases
needed in physics. For j = 1

2 :

J+ ∣−
1
2
⟩ = ∣1

2
⟩ , J− ∣

1
2
⟩ = ∣−1

2
⟩ . (10.35)

For j = 1:
J+∣ − 1⟩ =

√
2∣0⟩, J+∣0⟩ =

√
2∣1⟩, J−∣1⟩ =

√
2∣0⟩, J−∣0⟩ =

√
2∣ − 1⟩. (10.36)

Note that the (nonzero) cm for these two cases are particularly easy to remember (that is, if for
some odd reason you want to): they are all 1 in one case, and

√
2 in the other. Let us also write

down the j = 2 case for later use:

J+∣ − 2⟩ =
√

2∣ − 1⟩, J+∣ − 1⟩ =
√

6∣0⟩, J+∣0⟩ =
√

6∣1⟩, J+∣1⟩ =
√

2∣2⟩,
J−∣2⟩ =

√
2∣1⟩, J−∣1⟩ =

√
6∣0⟩, J−∣0⟩ =

√
6∣ − 1⟩, J−∣ − 1⟩ =

√
2∣ − 2⟩.

(10.37)

So you did all of this before in QP1 and might be wondering what is new so what have you learnt
from this? We’ll we’ve implicitly figured out how to write J+ and J−, and thereby also J+ and J−
in a 2j + 1 dimensional basis working only from the known commutation relationships between
Jx, Jy and Jz. Or, in group theoretic language, from the structure constants that define the Lie
Algebra of 3D rotations, SO(3), we have computed a 2j + 1 dimensional representation of the
SO(3) Lie algebra.
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